
2. 

3Q 

4. 

5. 

6. 

7. 

8. 

. 

I0. 

ii. 

12. 

A. P. Balashov, S. B. Seleznev, and L. N. Kogai, "Influence of the energy insertion 
condition on the mechanical damage of solids of different classes by powerfully pulsed 
electron beams (Survey)," Fiz. Khim. Obrab. Mater., No. 2 (1982). 
L. I. Mirkin, Physical Principles of Laser Beam Material Processing [in Russian], 
Izd. Moskov. Gos. Univ., Moscow (1975). 
Roush, "Influence of heating time on stress waves caused by thermal action," Trans. 
ASME, Appl. Mech., 36, No. 2 (1969). 
Yu. G. Korotkikh and A. I. Ruzanov, "Investigation of dynamic destruction of elastic- 
plastic bodies under force and thermal effects," Prikl. Mekh., 14, No. 7 (1978). 
N. Kh. Akhmadeev, E. P. Sorokina, and K. K. Yaushev, "Spall destruction of aluminum 
plates under pulse thermal heating," Fiz. Goreniya, Vzryva, No. 5 (1983). 
Sh. U. Galley and S. V. Zhurakhovskii~ "Destruction of mu!tilayered plates in thermal 
viscoelastic-plasticwaves," Probl. Prochn., No. ii (1984). 
E. T. Avrasin, V. S. Kessel'man, and A. B. Frolov, "Analysis of mechanical stresses 
originating in metals subjected to a laser pulse," Fiz. Khim. Obrab. Mater., No. 1 
(1985). 
Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydro- 
dynamic Phenomena [in Russian], Nauka, Moscow (1966). 
V. I. Zharkov and V. A. Kalinin, Equations of State of Solids at High Pressures and 
Temperatures [in Russian], Nauka, Moscow (1968). 
A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], 
Nauka, Moscow (1966). 
S. V. Zhurakhovskii, "Destruction of material in thermal viscoelastic-plastic waves," 
Probl. Prochn., No. 7 (1985). 

RELAXATION MODEL FOR DESCRIBING THE STRAIN OF POROUS MATERIALS 

E. I. Romenskii UDC 624.131+539.215 

Plastic volume deformation characterizes the strain of porous media. Various models 
involving, in particular, the porosity concept, are used for its description. A survey of these 
models is given in [i]. Maxwell'snonlinearmodel [2] has been founduseful for plastic shearing 
strain in the case of rapidly occurring processes. We propose that plastic volume deformation 
also be considered within the framework of the relaxation model. Relaxation equations of 
elastoplastic strain with plastic volume and shearing strain are derived. An example illus- 
trating the determination of interpolation expressions for the equation of state and the 
volumetric relaxation time is given. The proposed model describes qualitatively the anom- 
alous increase in the amplitude of the reflected wave, which has been detected experimentally 
(see, for instance, [3]). 

Assume that the medium under consideration does not experience shearing strain and that 
the stress tensor in this medium is reduced to pressure. In this case, the strain values in 
the medium are determined only by changes in the density p, which, for the assigned field 
of velocities ui, is found from the continuity equation 

ap/at + u~ap/ax~ § pau~/az~ = O. (i) 

As is known [4], in the absence of shearing strain, the density is related to the prin- 
cipal values of the Hencky tensor of logarithmic strain h i by the relationship p = P0 exp 
(--hz -- h2 -- h3) (P0 is the initial density of the medium). If there is only volume strain 
in the medium, then h I = h 2 = h3 and in (P/P0), the compression logarithm, constitutes the 
measure of deformation. 

Assume that the volume strain rate can be divided effectively into its elastic and 
plastic parts: 

8 3 8 

i=l d.rj dt  4=I i~1 
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d ~ 0 
Henceforth, dt --777" + u~7-x~" The compression P/P0 is decomposed into the product of the elas- 
tic O/p, = exp (--h~ - h~ L~h~) and the plastic P.,/P0 = exp (-h~ - h~ - h~) compression: 

(P/Po) = (P/P,)(P,/Po). 
Thus, Eq. (i) is reduced to the expression 

dln(p , /p)  Oui dln(Po/P*) Ou_..._.i 
d------i----- = Ox~ dt = Oz~ ~" ( 2 )  

We assume that the intrinsic energy of the medium depends on the effective elastic strain 
h t (the superscript e will be henceforth omitted) and on the entropy. In our case, this de- 
pendence is given by E(hz, h2, h3, S) = E(p,/p, S). Using the thermodynamic identity [4] 

0 OE d(h l  + h 2 + h 3 ) + E s d S ~  dE  = Ehidh i + E s d S  = ~p, 0(p/p,) 

we obtain the following for the stress: 

OE OE 
~ i =  P'b-~i = POln (p,/p) = - - P "  ( 3 )  

As usual, the temperature is calculated by means of the expression T = 8E/8S. 

For the intrinsic energy, the following equation holds: 

pOE/Ot ~-pu~OE/Ox~ + pOu/Ox~ = O~ 

which follows from the law of conservation of energy. 

We now denote ~ = in (p,/p), and Eq. (2) is then written thus: 

(4) 

d$Idt = Ou~IOx, -- % 

while expression (3) assumes the form 

(5) 

p = --pE~. (6)  

We now obtain from Eq. (4) 

d~ dS Oui Oua dS ^~, Ou~z 

Hence follows the entropy equation 

EsdS/dt  = E ~ .  ( 7 ) 

For the closure of the model, it is necessary to determine the rate of plastic volume strain 
~, for which we use the relaxation model. We assume that ~ = ~/~v = [In(p,/p)]/~v = (h t + h= + ha)/Tv. 
Thus, Eq. (5) for the effective elastic volume strain assumes the form 

d~ld t  = OuilOxi - -  ~l 'cw 

w h i l e  t h e  e n t r o p y  e q u a t i o n  ( 7 )  b e c o m e s  

( s )  

EsdS/d t  = ~E~/~v. ( 9 )  

In view of the second law of thermodynamics, it is necessary that the inequality (E S = T > 
0, T V > 0) ~E~ e 0 be satisfied. 

One naturally assumes that the relaxation time T V is a function of the parameters of 
state for the medium, which, as will become clear later on, makes it possible to describe 
experimental data with a sufficiently hig h accuracy. 

By adding the momentum equation to the above equations, we obtain a system for describ- 
ing a medium characterized by inelastic volume variation: 

9 d u / d t  -}- Op/Oxi ~ O, d~/dt - -  Ou~/Oxi = ~ / ~ v ,  
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9 d E / d t - ?  pOuJOxi = O, dp/dt 4- 90udOxi = 0 (p ~ --9E~). (10)  

A corollary of system (i0) is the entropy equation (9). If inelastic volume as well as shear- 
ing strain occur in the medium, it is necessary to use simultaneously the relaxation model 
described above and the relaxation model for shearing strain [2]. 

We provide a system of equations with two plastic strain relaxation processes. For the 
sake of simplicity, we shall consider the variant where strain occurs along the three prin- 
cipal axes. The case where there is nonzero shearing strain can readily be generalized by 
using, for instance, [2]. Assuming that the strain tensor is diagonal like the stress ten- 
sor, we obtain the following system: 

du i Oo i = dh~ Ou t h i - ( h ,  §  2 § h l + h  2 §  
P dt Ox i O, dt 0~: i ~ T V 

3 

P ~ ~ Oui dp Oui = O. 

i = 1  

H e r e ,  E ( h z ,  h2 ,  ha ,  S) i s  t h e  i n t r i n s i c  e n e r g y  d e n s i t y ,  ~i  = 9Eh i i s  t h e  s t r e s s  t e n s o r ,  h i  i s  

t h e  Hencky  s t r a i n  t e n s o r  ( p r i n c i p a l  v a l u e s ) ,  ~Y i s  t h e  r e l a x a t i o n  t i m e  o f  vo lume s t r a i n ,  and 
~o is the relaxation time of shearing strain. A corollary of this system is the equation for 
entropy 

R8 dSdt ~ ~ Eh~ hi 3 + "~v (Eh~ + Ehi�9 + Eh~) X 

The i n t r i n s i c  e n e r g y  E ( h z ,  h a ,  h s ,  S) mus t  be c h o s e n  so t h a t  t h e  i n e q u a l i t y  Q a 0 i s  s a t i s -  
f i e d .  I t  s h o u l d  be e m p h a s i z e d  once  more  t h a t ,  f o r  a s a t i s f a c t o r y  d e s c r i p t i o n  o f  e x p e r i m e n t a l  
d a t a ,  i t  i s  n e c e s s a r y  t o  c o n s i d e r  t h a t  t h e  r e l a x a t i o n  t i m e  xV and z o depend  on t h e  p a r a m e t e r s  
of state of the medium. 

Let us consider the example of determining the interpolation expression for ~V. For 
this, we state the problem of hydrostatic compression of an element of the medium at a con- 
stant strain rate. We assume that the element of the medium experiences hydrostatic compres- 
sion (dilation) at the constant strain rate e ~ OuJOx I @ Oui/Ox 2 -~ Ou~/O~ and that the pres- 
sure is uniformly distributed over the element in question. Within the framework of these 
assumptions, system (i0) is reduced to the following: 

~E d ~ = ~ _ _  L ds .. ~ t d p _ _ _ ~ .  ( l i )  
dt "~V' dt ES'~ V' p dt 

We use the equation of state in the following form: 

The p r e s s u r e  and t h e  t e m p e r a t u r e  c a l c u l a t e d  on t h e  b a s i s  o f  t h i s  e q u a t i o n  o f  s t a t e  a r e  g i v e n  
by t h e  e x p r e s s i o n s  

~ + t  LKT, d - - t  + p , • c V T o L \ p , ]  J -~, e . 

H e r e ,  K0 ( t h e  s q u a r e  o f  t h e  v e l o c i t y  o f  sound)  and cv  ( s p e c i f i c  h e a t  a t  c o n s t a n t  vo lume)  mus t  
be  d e t e r m i n e d  u n d e r  c o n d i t i o n s  o f  e l a s t i c  b e h a v i o r  o f  t h e  medium, where  r e l a x a t i o n  p r o c e s s e s  
do not play a part; the constants a and v are the interpolation indices of nonlinearity of 
the medium; and T O is the initial temperature. 

We provide an example illustrating the method of choosing the interpolation expression 
for the volume relaxation time. This expression is not universal and can be modified if neces- 
sary. We shall use a material characterized by the p(e) diagram, where E = In (P0/P), which 
is typical for porous materials that can be compacted. This diagram is shown in Fig. i (curve 
i). The volume relaxation time T V is assigned by the interpolation expression 
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The considerations on which this expression is based are the following: The multiplier 
Ip/p01-m is responsible for the "shelf" of plastic strain AB in the p(e) diagram (the value 
of ~V is small over this segment); the multiplier exp [%(p/p0) n -- i)] is responsible for 
the increase in the relaxation time for large compression values (the material becomes in- 
creasingly elastic, and the relaxation time increases). 

System (ii) was integrated numerically. The following values of the constants were used: 
P0 = 0.32 g/cm 3, K0 = 0.47"i0 z~ cm2/sec 2, cv = 0.35 "107 cm2/(sec2"deg), To = 300 K, ~ = i, 

= i, ~V~ = 1 sec, p0 = 7.52 MPa, m = 30, e = 13, and n = 2.2 

Figure 1 shows the p(E) diagrams for the strain rates e = -10-2; 102; i0 ~ sec -z (curves 
2-4) and the p(e) diagrams corresponding to the load relSase for a material at the strain rate 

= 10 -2 sec -z from two points on thediagramef loading at the strain rate ~ = 10 -2 sec -I. Figure 2 
shows the T(e) diagram corresponding to loading at the same strain rates. It is evident that, for 

= --10 -2 sec -z, the p(E) curve describes satisfactorily the diagram defined by curve i. 
A better fit can be obtained by varying the constants of the equation of state and the relax- 
ation time. 

We provide the results of numerical calculations revealing an anomalous increase in the 
amplitude of the wave reflected from a rigid wall. The essence of this phenomenon consists 
in the following: when a steady-state shock wave acts on a porous material layer lying on 
a rigid surface, the wave reflected from this surface has an amplitude much larger than that 
of the incoming wave (gas-dynamics theory predicts approximate doubling of the reflected wave 
amplitude). An experimental description of this phenomenon can be found, for instance, in [3]. 

The problem was solved for a layer with a thickness of 3 cm lying on a rigid base. We 
used the unidimensional variant of system (I0) with the equation of state (12) and the re- 
laxation time (13). The boundary conditions were assigned by the pressure p = 45 MPa for 
x = 3 cm and the zero velocity u = 0 for x = 0. S. K. Godunov's difference scheme [5] was 
used for solving the problem. 

The calculation results have shown that, in this model, the compression wave is split 
into an elastic forerunner and a plastic wave. Figure 3 shows the pressure as a function 
of time at a rigid wall for x = 0. It is evident that the maximum amplitude of the reflected 
wave exceeds the pressure acting from the outside on the material layer by a factor larger 
than 3. The subsequent vibratory behavior of the pressure at a rigid wall qualitatively 
agrees with the experimental data given in [3]. 
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